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NONLINEAR RESPONSE OF BIMODULAR-MATERIAL PLATES

J. N. Reddy and W. C. Chao
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract The paper presents finite element results for

geometrically nonlinear response of fiber-reinforced, single-layer and

two-layer cross-ply rectangular plates constructed of materials which
have linear elastic properties in tension and compression that are

different. A shear deformation theory of layered composite plates,

accounting for large rotations (in the von Karman sense) and the

bimodular action, is employed to analyze rectangular plates made of two

cord-rubber bimodular materials. Numerical results for transverse

deflection are presented for simply supported plates under sinusoidally

distributed and uniformly distributed transverse loads.

1. INTRODUCTION

The present paper is a continuation of the research by the authors

and their colleagues [1-51 in the analysis of bimodular composite

plates. The previous investigations by the authors and others were

based on geometrically linear theory of plates. The only exception to

this statement is provided by the works of Kamiya [6,7], which are

concerned with a clamped circular plate, and a simply supported

rectangular plate under sinusoidally distributed load, respectively.

The present paper employs the finite element developed in [2,81 and the

V fiber-governed constitutive model of Bert F91 to investigate the

* geometrically nonlinear response of bimodular-material plates. The

following brief review of literature provides a background for the

present paper.
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Analysis of plates made of bimodular materials began with the work

of Ambartsumyan [10] in 1965 (although Timoshenko [11] considered the

flexural stresses in such materials as early as 1941, kibartsumyan's

work is credited for the renewed interest in the analysis of bimodular

materials). Shapiro [12] considered the simple problem of a circular

plate under a pure bending moment at its edge. Kamiya [6,7] analyzed

the large-deflection behavior of clamped circular plates using a finite

difference technique, and rectangular plates under sinusoidally

distributed load using the Galerkin method. In these investigations,
waunlde ntesimpl csofylnralbdinvbstaiyat[13].

only bimodular isotropic materials were considered, and the transverse

shear strains were omitted. The effect of thickness shear deformation

was included in the simple case of cylindrical bending by Kamiya [13].

The first analysis of bimodular, anisotropic materials is apparently due

to Jones and Morgan [14], who treated cylindrical bending of a thin,

cross-ply laminate. In the last couple of years, a number of papers

dealing with the static bending and free vibration of single-layer and

two-layer cross-ply plates have appeared [1-5, 15-17]. Most of these

works are a result of the support of the research by C. W. Bert at the

University of Oklahoma and the senior author by the Office of Naval

Research. The significant contributions of this research over previous

works are:

(i) the material of each layer is both elastically and

thermoelastically orthotropic and bimodular;

(ii) both single-layer orthotropic and two-layer cross-ply

laminated plate and shell constructions were considered

using a fibre-governed constitutive model;

(iii) transverse shear strains are included;
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(iv) simply-supported and clamped boundary conditions are

considered, and sinusoidal distribution as well as uniform

distribution of transverse load and temperature changes are

considered:

(v) static, transient, and free vibration responses are studied:

and

(vi) both exact (for certain edge conditions and loadings) and

finite-element analyses are presented.

The present paper investigates the large-deflection (in the von

Karman sense) behavior of single-layer orthotropic and two-layer cross-

ply plates.

2. GOVERNING EQUATIONS

Consider a plate constructed of a finite number of uniform-

thickness, orthotropic, bimodular-material layers oriented arbitrarily

with respect to the plate axes. The plate coordinates are taken such

that the xy-plane coincides with the midplane of the plate. Under the

assumptions that the layers remain linearly elastic during the

deformation and the generalized Hooke's law is valid, and that no

debonding occurs between layers, one can employ the equations governing

the shear deformable theory of layered composite plates [8,181. Since

these equations are amply documented in the works cited earlier (see,

for example, [1-5]), only the strain-displacement relations and the

equations of motion will be repeated here to indicate the nonlinear

terms resulting from the von Karman theory.

Assuming that the conditions of the von Karman plate theory are

valid, and accounting for the transverse shear strains, the strain-

displacement relations can be expressed in the form,
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+u 8v bw bw Bx y 0

6 = + b + b 6 Y + z(Y + Bx-) -6 + z 6

a w 8 w

Here u, v, w are the midplane displacements along x, y, z directions:

and (x and 4y are the slopes in the xz and yz planes due to bending

only. In writing the strain-displacement equations, it is assumed that

the products of 4x, .y, bu/bx and bv/y are neglected. Since the

constitutive relations are based on the plane-stress assumption, strain

! 3 does not come into the equations.

Neglecting the body moments and surface shearing forces, the

equations of equilibrium (in the absence of surface and body forces) can

be written as,

N1 ,x +N 6 ,y = 0

N6 ,x + Nxly =0

Olx + 02,y + N(Niw) = q0  (2.2)

~M1 +1 - O,x M6,y

M 6. x + M 2,y -0 2  0

where Ni , Qj, and Mi are the stress and moment resultants defined by

h/? h/2
(NI 'Ml) f -h/2(1,z)ai dz ( I'M2 ( 5 4 )dz, (2.3)

and N(.) is the nonlinear operator,
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-(,N (Nibw) + a~ (N, 8- ) + ~--(N, a'W + (N, bw)(24
'6 + -IN Y) '6Y 6 6 (2.4)

Here ai (i = 1,2,4,5,6) denotes the stress components (a a

a 2  ay, ' 4 =yz , '5 =a xz and a6 = xy).

3. FINITE-ELEMENT FORMULATION

The finite-element model used in the present study is the same as

that employed in [2] except for the inclusion of the nonlinear terms.

The formulation is not repeated here but the steps involved in the

nonlinear analysis of the bimodular-material plates are pointed out.

The finite-element model, for a typical element, in the present case is

of the following form
[K]fAI = {F}, (3.1)

where {} denotes the column of the nodal values of the generalized

displacements. The elements of the element stiffness matrix [K] are

given in Appendix I.

Several comments are in order on the computational scheme used in

the present study. First one should note that the stiffness matrix [K]

is nonlinear in that it depends on the displacement vector. Therefore,

an iteration technique must be used. On the other hand, the calculation

of the stiffness coefficients requires the knowledge of the neutral

surface locations,

z u 1(w ) 2/,
Znx [u x -2 , x

1 2

Zny (vl + (. (Wy)2]/4yY (3.2)

which in turn depend on the solution (u,v,w,,X 1y ). Thus another

Iterative scheme is required for the determination of the neutral
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surface locations. The latter iterative scheme begins with assumed

values of Znx and Zny (say, Znx = Zny = 0) and then Aij, Bij and Dij are

computed using these values. In general, the neutral-surface locations

are not independent of the position (x,y), and therefore, the

expressions for plate stiffnesses, Aij, Bij and Dij, also depend on x

and y coordinates. Since the element stiffness coefficients Kij are

evaluated at the Gauss points, the plate stiffnesses Aij, Bij and Dij

are also evaluated at the Gauss points by using the neutral-surface

positions computed at the Gauss points. After obtaining the generalized

displacements, the neutral-surface locations are recomputed. Using

these new values of Znx and Zny, the stiffnesses for the next iteration

are computed. This procedure is repeated until the difference between

any two consecutive values of Znx (and Zny) differ by a small

preselected value (say 0.1%). Once the convergence on the neutral

surface locations is achieved, iteration on the nonlinear stiffnesses is

carried until convergence on the displacements is achieved.

4. NUMERICAL RESULTS AND DISCUSSION

In the following, numerical results are presented for rectangular

plates made of two bimodular materials: aramid cord-rubber (AR) and

polyester cord-rubber (PR), which are used in automobile tires. The

material properties for these two materials are given in Table 1. In

the present study, a 2 x 2 mesh of nine-node isoparametric elements in

the quarter plate was used. The shear correction coefficients k? were1i
chosen to be 5/6. All of the computations were carried on an IBM 3032

computer in double precision.
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Table I Material properties for aramid cord-rubber and polyester cord-
rubber, unidirectional, bimodulus composite materials.

Property Aramid-Rubber Polyester-Rubber
Tensile Compressive Tensile Compressive

Ell (GPa) 3.58 0.012 0.617 0.0369

E22 (GPa) 0.00909 0.012 0.008 0.0106

v12 0.416 0.205 0.475 0.185

G12 = G13 (GPa) 0.0037 0.0037 0.00262 0.00267

G23 (GPa) 0.0029 0.00499 0.00233 0.00475

A summary of the linear analysis is presented in Table 2. The

effect of the aspect ratio (b/a) and thickness-to-side ratio (h/a) on

nondimensionalized center deflection (w) is apparent from the results in

Table 2 (also see Figures 1 and 2). The effect of the transverse shear

deformation is to increase the nondimensionalized center deflection as

much as 30% for a side-to-thickness ratio of a/h = 25.

The results of geometrically nonlinear bending of bimodular plates

are discussed next. In order to validate the present element for the no-

nlinear analysis, first,single-layer and two-layer cross-ply rectangular

(ordinary, not bimodular) plates under uniformly distributed loading and

simply supported boundary conditions were analyzed, and the results are

compared with the analytical (perturbation) results of Chia [19,20] in

Fig. 3. The material properties of the single-layer plate (a/h = 100,

a/b = 1) are (see [19])

EI/E 2 = 20.0, G12/E2 = 0.5, v12 = 0.25. (4.1)

The layer properties of the two-layer plate (a/h = 100, a/b = 1) (see

[20])
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Table 2. Comparison of closed-form and finite element solutions of
single-layer (00) and two-layer (00/900) rectangular plates
of aramid-rubber materlal(linear analysis).

single-layer (00) Two-layer (00/900)

b/a h/a Znx/h w Znx/h W

CFS FES CFS FES CFS FES CFS FES

CPT 0.4317 - 0.7124 - 0.4281 - 0.6960 -

0.01 0.4317 0.4316 0.7134 0.7137 0.4281 0.4280 n.6969 0.6973

0.1 0.4318 0.4315 0.8134 0.8138 0.4282 0.4279 0.7830 0.7834
0.6 0.2 0.4319 0.4316 1.1125 1.1128 0.4284 0.4281 1.0342 1.0345

0.4 0.4322 0.4319 2.2862 2.2862 0.4290 0.4287 1.9802 1.9800
0.5 0.4323 0.4320 3.1590 3.1589 0.4293 0.4289 2.6695 2.6689

CPT 0.4420 - 1.8671 - 0.4383 - 1.7734 -

0.01 0.4420 0.4420 1.8689 1.8698 0.4383 0.4383 1.7751 1.7760
0.1 0.4420 0.4417 2.0537 2.0546 0.4384 0.4381 1.9492 1.9502

1.0 0.2 0.4421 0.4418 2.6058 2.6069 0.4385 0.4381 2.4635 2.4647
0.4 0.4422 0.4419 4.7490 4.7504 0.4388 0.4384 4.3960 4.3976
0.5 0.4423 0.4420 6.3228 6.3243 0.4389 0.4386 5.7764 5.7782

CPT 0.4454 - 3.0096 - 0.4434 - 2.8916 -

.01 0.4454 0.4454 3.0123 3.0135 0.4434 0.4434 2.8941 2.8954
2.0 0.1 0.4454 0.4452 3.2774 3.2783 0.4434 0.4431 3.1478 3.1490

0.2 0.4454 0.4451 4.0774 4.0773 0.4434 0.4431 3.9130 3.9137
0.4 0.4454 0.4451 7.2381 7.2337 0.4435 0.4431 6.9234 6.9220
0.5 0.4455 0.4451 9.5801 9.5724 0.4435 0.4431 9.1397 9.1365

t w = (wEc 2h
3 )l0 2/(q a4).
22 0
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a.'I

10.0 closed-form solution (CFS)

-.- b/a w, single-layer

8 -- b/a w, single-layer (FES)
8.0 -- b/a 0.6, single-layer

S...two-layer (00/900)

6.0

i0

U Cj

2.0 . . .

U " U i " 7 . .1 l I I ,

1 a/h-? 10 20 30 40 50 0

Figure I Effect of side-to-thickness ratio (a/h) on the nondimensionalized
deflection (w) of single-layer (00) and two-layer (00/900) rectan-
gular plates of aramid-rubber bimodular material (small-deflection
theory).

4

I.
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10.0
a -h= 5, SL

SL = single-layer (00)

8.0 TL = two-layer (00/900)

0o. 5, TL

* 6.0

M

4.0

S I I I ' hI 1 0 I I

b/a - 0.6 1.0 1.4 1.8 2.2

Figure 2 Effect of aspect ratio (b/a) on the nondimensionalized
deflection (w) of single-layer (00) and two-layer (00/900)
rectangular plates of aramid-rubber bimodular material
(small-deflection theory).
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* ordinary-materiaI-plates

Square plate under uniform loading
3.0 a/h=l00, a=b

" (qb4 /E2h
4)

o =  
q

2.0 Y (l v v

0 FEM

1.0 - --"' Chia[20] i . . .

.0 /wi FEM [00/900]

0.0 1 A
[00/90°] 100 200 300 400 500 qo

00 5 10 15 20 25 40

Figure 3. Nonlinear center deflection of single- and two-layer cross-ply
square plates under uniform loading (E = E , i=1,2; simply
supported boundary conditions)



12

IEl/E2 = 40.0, G12/E2 = 0.6, = 0.2. (4.2)

The present results are in excellent agreement with those of Chia

[19,201. Next, an isotropic, bimodular, simply supported square plate

under sinusoidally distributed loading was analyzed in an effort to make

comparisons with the results of Kamiya [7]. The present results are

compared with those of Kamiya in Fig. 4. The present results do not

agree with those of Kamiya [7] for all ratios of Ec/Et (including 1).

Since our results are validated for EC/Et = 1 in the previous example,

one must come to the conclusion that Kamiya's [7] results are in error.

The nondimensionalized center deflection (w/h) versus the load

parameter (q = qoEe 2a 4 /h 4 ) are presented in Table 3 for single-layer

(00) and two-layer (00/900) square plates (a/h = 100) aramid-rubber and

polyester-rubber materials under sinusoidal loading and uniform

loading. First note that the response of aramid-rubber plates is more

nonlinear than that of polyester-rubber plates. Also note that the

deflection due to uniform loading is about one and one-half times that

due to sinusoidal loading (also see Fig. 5).

Table 3 Nondlmensionalized transverse deflection of single-layer (00)
and two-layer (00/900) square plates of aramid-rubber and
polyester-rubber materials

(a/h) = 100, w = w/h, q = qoE C 4/0).

Aramid-Rubber Polyester-Rubber
q single-layer (00) 0°/900 single-layer (00 ) 00/900

SL UDL SL SL UDL SL

Linear 0.1869 0.2959 0.1777 0.1081 0.1683 0.1776
10 0.1776 0.2720 0.1660 0.1069 0.1654 0.1707
20 n.3350 0.4963 0.3100 0.2110 0.3233 0.3254
30 0.4743 0.6821 0.4353 0.3115 0.4718 0.4639
40 0.5977 0.8417 0.5452 0.40RI 0.6106 0.5879
50 0.7083 0.9798 0.6443 0.5006 0.7399 0.6997
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0.80

J 0.75 -% q =q 0 sin ff. sin 2~

0.70- q0= q 0a 2/E ch2

a/h = 100, b=a

j~'I " 0.65 - *%.,..-FEM((a/h)2 0=33.82)

4--

0.55 -

4) 2

4, Kamiya ((a/h) q =33.82)
S 0.50

S 0.45

0%

0.40 FEM ((a/h) %o=16.91)

010

0.35 -5-

0.30

0.25 Kamiya ((a/h) 2 %=16.91)

0.2

Figure 4. Nondimensionalized center deflection versus the ratio
of longitudinal modulus in tension to the longitudinal
modulus in compression for an isotropic bimodular, square
plate under sinusoidal loading (simply supported case).
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Plot of nondimensionalized center deflection versus the aspect

ratio (a/b) is shown in Fig. 6 for single-layer and two-layer (00/900)

aramid-rubber plates (a/h = 100) under sinusoidal loading (for the load

parameter value of 10). The effect of the aspect ratio is, relatively,

more pronounced in the two-layer plates than in the single-layer plates

(the effect is to increase the deflection, w = w/h).

Plots of the nondimensionalized center deflection versus the side-

to-thickness ratio and the load parameter are shown, respectively, in

Fig. 7 and 8 for aramid-rubber square plates under sinusoidal loading.

From the plots presented in Fig. 7 it is clear that the effect of shear

deformation is more pronounced with increasing values of the load

parameter. This can also be seen from the load-deflection curves

presented in Fig. 8.

5. SUMMARY AND CONCLUSIONS

Results of the finite-element analysis of the equations governing

the Timoshenko-type shear deformable theory that accounts for geometric

nonlinearities of the von Karman plate theory are presented for aramid-

rubber and polyester-rubber bimodular composite plates under transverse

loading. Both single-layer and two-layer cross-ply plates are analyzed

under sinusoidally and uniformly distributed loads. The effect of the

thickness-shear (which is to increase the deflection w/h with increasing

values of side-to-thickness ratio, a/h) is more apparent for side-to-

thickness ratios smaller than twenty, and for larger load parameter

values. The finite-element analysis of ordinary - (i.e., not

bimodular-) material plates whose elastic properties are taken to be the

average of compressive and tensile properties listed in Table I show
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w UDL=uniforn load, SSL=sinusoidal load
h SL~single-layer, TL=two-layer

1.0 ARaramid-rubber
PR=pol yester-rubber

0.8a/h =100

0.6

0.4

0.2

ii10 20 30 40 50
Figure 5. Load-deflection curves for thin square plates

of bimodular materials (a/h =100)

1.2

w ~ a/h 100, q 10

0.8

0.4

a/b 1 2 3456

Figure 6. Effect of plate aspect ratio on the nonlinear deflection
of aramid-rubber bimodular-material rectangular plates
under sinusoidal loading(SSL) (SL=single-layer, TLtwo-
layer, ARaramid-rubber, PR-polyester-rubber)
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SL=si nql e-l ayer(OO 00)ah=

08 TL=two-layer(0/90) Tah

4 0.6

0.4

j 0.2

10 20 30 40 50 q

Figure 7. Load-deflection curves for square plates of aramid-
rubber biniodular material under sinusoidal loading.

0.8

w

0.6 0090q=40

* 0.4

00, q=20

0.2 0 ier0, =10

5 10 20 30 40 50 a/h

Figure 8. Effect of side-to-thickness ratio on the nonlinear
deflection (w/h) of square plates of aramid-rubber
bimodular material (a/hulOO)
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that the deflections predicted are about one-fourth (for aramid-rubber

plates with a/h = 10) of those predicted using the bimodular properties

(see [16]). Thus the effect of bimodularity is significant on the

response.

As pointed out in the introduction of this paper, there is only a

little to be done in the way of finite-element analyses of bimodular

plates. The nonlinear transient response of bimodular plates seems to

be the final step in the series of investigations based on the fiber-

governed constitutive model. As far as the constitutive models are

concerned, there is still a need for improved and/or realistic models.

If a single functional relationship between stresses and strains were

available for both compressive and tensile regions, the analysis would

be much cleaner (free of any assumption concerning the state of stress

or strain in the material).

Acknowledgments - The support of the research reported herein by

the Mechanics Division of the Office of Naval Research through Contract

N00014-78-C-0647 is gratefully acknowledged. Our thanks are also due to

Professor C. W. Bert of the University of Oklahoma for many helpful

discussions during the course of the research on bimodular-material

plates and shells.

6. REFERENCES

1. C. W. Bert and S. K. Kincannon, Bending-extensional coupling in
elliptic plates of orthotropic bimodulus material, Developments in

" Mechanics, 10 (Proc. 16th Midwestern Mechanics Conference), Kansas
-Nate Unive-ity, Manhattan, KS, pp. 7-11, (Sept. 1979).

2. J. N. Reddy and W. C. Chao, Finite-element analysis of laminated
bimodulus composite-material plates, Computers and Structures, 12,
pp. 245-251, (1980).

I
i,



18

3. C. W. Bert, J. N. Reddy, V. S. Reddy, and W. C. Chao, Bending of
thick rectangular plates laminated of bimodulus composite materials,
AIAA Journal, 19, pp. 1342-1349, (1981).

4. J. N. Reddy, C. W. Bert, Y. S. Hsu, and V. S. Reddy, Thermal bending
of thick rectangular plates of bimodulus composites materials,
journal of Mechanical Engineering Science, 22, pp. 297-304 (1980).

5. C. W. Bert, J. N. Reddy, W. C. Chao, and V. S. Reddy, Vibration of
thick rectangular plates of bimodulus composite material, Journal of
Applied Mechanics, 48, pp. 371-376 (1981).

6. N. Kamiya, Large Deflection of a different modulus circular plate,
Journal of Engineering Materials and Technology, Trans. ASME, 97H,
o-2-'N-. I, pp.- -5 ,----'7--'

7. N. Kamiya, An energy method applied to large elastic deflection of a
thin plate of bimodulus material, Journal of Structural Mechanics,
3, No. 3, pp. 317-329, (1975).

8. J. N. Reddy, A penalty-plate bending element for the analysis of
laminated anisotropic composite plates, International Journal for
Numerical Methods in Engineering, 15, No. 8, pp. T-7--2-0-6-TVT

9. C. W. Bert, Models for fibrous composites with different properties
in tension and compression, J. Eng. Matls. and Tech., Trans. ASME,
99H, pp. 344-349, (1977).

10. S. A. Ambartsumyan, The axisymmetric problem of a circular
cylindrical shell made of material with different stiffnesses in
tension and compression, Izvestiya Akademiya Nauk SSSR, Mekhanika,
No. 4, 1965, pp. 77-85: En-iWtranslatlon, tTorl--Tech '-
Information Service Document AD-675312 (1967).

11. S. Timoshenko, Strength of Materials, Part II: Advanced theory and
problems, 2nd -d.-Van--t-ra-6-dTN- Tnceton, N.J. (1941).

12. G. S. Shapiro, Deformation of bodies with different tensile and
compressive strengths [stiffnesses], Mechanics of Solids, 1, No. 2,
pp. 85-86, (1966).

13. N. Kamiya, Transverse shear effect in a bimodulus plate, Nuclear
Engineering and Design, 32, No. 3, pp. 351-357, (1975).

14. R. M. Jones and H. S. Morgan, Bending and extension of cross-ply
laminates with different moduli in tension and compression,
_Computers and Structures, Vol. 11, No. 3, pp. 181-190, (1980).

15. Y. S. Hsu, J. N. Reddy, and C. W. Bert, Thermoelasticity of circular
cylindrical shells laminated of bimodulus composite materials,
Journal of Thermal Stresses, 4, pp. 155-177, (1981).



19

16. J. N. Reddy and C. W. Bert, On the behavior of plates laminated of
bimodulus composite materials, ZAMM, 61, (1981).

17. J. N. Reddy, Transient response of laminated, bimodular-material,
composite rectangular plates, Report VPI-E-81.28; Department of
Engineering Science and Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061.

18. J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous
anisotropic composite plates, ASME Journal of Applied Mechanics, 37,
pp. 1031-1036, (1970).

APPENDIX - I: ELEMENTS OF STIFFNESS MATRIX

[KII] [K12] [K13] [K14] [K15]-

[K2 1] [K22] [K2 3] [K2 4] [K2 5]

[K] = [K31] [K32] [K 33] [K34] [K3 5] (A.1)
[K 4 1] [K 42] [K 43  [K 44] [K45]

[K51] [K52] [K53] [K54] [K55]

The matrix coefficients & are given by

[K1 1] = A l[SXX] + A66[sYY],
-11

[K12] = A12[SXY] + A66[sXY]T = [K21]T,

[K 13] =Ajj[Rxx] + A,2 R~ + A 6 [Rxy] T + [Ryy]) 1- [K3liT,

[K14] = BI[Sxx] + 866[Syy] = [K4 IT,

[K15] = B12[SxYI + 8 [sXY]T = [K51T

[K22] A22 [SYY] + A6 6 ,Sxx. ,

[K23]1 A rRxy1T + A [Ryy] + A ([RXY] + [Rxx]) =1 [K 32 ]T
12- x . 22 y 66 x y

[K24) " 12[sXy]T + B66[SxY] = [K4 2 1T.

[K25] B2 [syy] + B66[SXX] - (K52 T
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[K 33] A [S]+AAY]
1 55SX 44

2K 3e 1 [N1  ~- -9 6  + N2 -bf'-bT] dxdy,

34] 43 A[1 A55 [Sxo] = [K I]T

[K34  B [Rxx] + B rRxy]1 + B ([Ry] + [Rxy]) 2[2 11ix 12Ly 66 x y 2

[K 35] =A [SYO j 531T,
1 441 [ 1

[K35  B 2[RxXy] +B 22[RY + B66 ([R' YT + [R;X 5)2[

[K551 D6 [Sxx 1 + D 2[ SYY] + A44[S]. (A.2)

where -

R

=f ~a~i .2dxdy I CI& = Ovx~y,

w2 w2 aw bw
N, = All (*-i) + A12 (6w) + 21 xY

NR6 = A1  w)2 + A (aw)2 + 2A 6awW (A.3)
16 .6226by 66 ax ;sj*

Here Aij, Blj, and Olj are the plate stiffnesses,
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-h/2 2
(A i jBij'DIj) "-h/2 (zz iJkdz(j 126

h/2
Aij = I-h/2 Qijkjdz (ij : 4,5) (A.4)

where h is the total thickness of the plate, Qijk , denotes the plane-

stress reduced stiffness (1,j refer to the position in the compliance

matrix: k refers to the sign of the fiber-direction strain: k = 1,

tensile and k = 2, compressive: and i refers to the layer numnber), £j

and ic are the strains and curvatures associated with the displacements

in (2.1), and ki are the shear correction coefficients (see [2-5]).

II
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